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Abstract—In this paper, we present a new construction of
product codes, where all rows of the information array are
encoded using the low-density parity-check (LDPC) codes while
only partial columns of the information array are encoded using
the algebraic codes. Also distinguished from the conventional
product codes, the actual code rates of the presented partial
product codes are the same as those of the row component
LDPC codes, without any rate loss. This is achieved by using the
free-ride coding to transmit the additional column checks along
with the LDPC codewords. For decoding, an iterative decoding
algorithm, which is scheduled as free-ride decoding, row decoding
and column decoding, is proposed. At the column decoding stage,
the messages associated with those successfully decoded columns
are hardened and exploited to improve the free-ride decoding
and the row decoding. By assuming a binary symmetric channel
model after row decoding, we present an approximated bound
on the word error rate (WER) of the doubly-protected (by both
the row code and the column code) information bits. To predict
the performance of the proposed codes, a genie aided (GA)
lower bound derived from the original LDPC coded system with
partial known bits is presented. These bounds and the simulation
results reveal that the presented product-LDPC codes can have
a significant performance improvement over the row component
LDPC codes (about one dB at the WER of 10−5). They also reveal
that the presented product-LDPC codes can have a flexible trade
off between the error-floor and the waterfall performances, by
using different row codes and column codes.

Index Terms—Free-ride codes, LDPC codes, product codes.

I. INTRODUCTION

Conventional product codes, which were first proposed by
Elias in [1], are constructed based on two component block
codes. A codeword of the conventional product codes is
usually represented by a rectangular coded array, where each
row is a codeword of the row code and each column is a
codeword of the column code. Evidently, compared to the
two component codes, the code length (coded array size) is
lengthened and the code rate is reduced, yielding a poten-
tial performance improvement. By introducing a turbo-like
iterative decoding algorithm, product codes become popular,
which are often referred to as block turbo codes (BTCs) [2] or
turbo product codes (TPCs) [3]. Due to the inherent parallel
structures of their encoding and decoding algorithms, the
product codes have been adopted in various communication
standards, including the IEEE 802.16 [4], the IEEE 802.20 [5]
and the IEEE-1901 [6].

In this paper, we present a new class of product codes,
where the whole information array is encoded row-by-row
using the low-density parity-check (LDPC) codes but only
partial information array is encoded column-by-column using

the high rate algebraic codes. More distinguishingly, the
additional column check bits are transmitted implicitly rather
than explicitly using the free-ride coding, which is an approach
to transmit several extra bits over the existing LDPC coded
link but without any bandwidth expansion or transmission
power increase [7], [8]. Thanks to the free-ride coding, the
proposed partial product-LDPC codes achieve the same code
rate as the row component LDPC codes. As an example
of applying the free-ride coding to code construction, the
main differences between this work and [9], [10] lie in
the encoding, decoding and performance analysis. For the
encoding, we discuss in more detail of the impact of row
codes and column codes on the performance. For the decoding,
we present an iterative decoding algorithm, where within one
iteration, the free-ride decoding, row decoding and column
decoding are performed sequentially. At the column decoding
stage, the messages associated with those successfully decoded
columns are hardened and exploited for next iteration. For
the performance analysis, we present a genie aided (GA)
lower bound by assuming both the free-ride codes and
the column codes are correctly decoded. We also present
an approximated bound on word error rate (WER) of the
doubly-protected (by both the row codes and column codes)
information. These bounds and simulation results reveal that
the proposed partial product-LDPC codes can reduce the WER
of the row component LDPC code from 10−3 to 10−6 at the
signal-to-noise ratio (SNR) around 2 dB. They also reveal that
the doubly-protected information can achieve a WER of 10−15

at the SNR around 2.5 dB.

II. RATE-LOSSLESS PARTIAL PRODUCT-LDPC CODES

A. Free-Ride Coding

Let F2 = {0, 1} be the binary field. Let u =
(u(0),u(1), · · · ,u(L−1)) with u(i) ∈ Fk

2 be the original
payload data need to be transmitted. Let Cp[n, k] be an LDPC
code, referred to as payload code, whose parity-check matrix is
denoted as H. Without extra bits, u is encoded by the encoding
algorithm of Cp[n, k], resulting in L LDPC codewords v =

(v(0),v(1), · · · ,v(L−1)) such that v(i)HT = 0 and vH̃T = 0,
where

H̃ = diag{H, · · · , H}︸ ︷︷ ︸
L

and diag{H, · · · ,H} is a block diagonal matrix with H on
the diagonal.
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Now we assume that, in addition to the payload data u,
a few extra bits f ∈ FℓL

2 with ℓL ≪ kL need to be
transmitted. This can be achieved by using free-ride coding [7],
[8] based on the original payload coded link. In this paper, we
employ Reed-Muller (RM)-based free-ride codes, denoted as
Cf [nL, ℓL]. Let GRM denote a generator matrix of an RM
code. A generator matrix G̃f of the free-ride code Cf [nL, ℓL]
can be found from

G̃fH̃
T = G̃RMΠ, (1)

where G̃RM = diag{GRM, · · · ,GRM} with L GRM and Π is
a row-column interleaver of size nL. Simply, by assuming that
the first m = n−k columns (denoted collectively as B) of H
are linearly independent, we have G̃f = diag{Gf , · · · ,Gf},
where Gf can be found as

Gf = [GRM(B−1)T,0ℓ×k]. (2)

Given the generator matrix G̃f , the encoding is implemented
in a superposition manner. The extra data f ∈ FℓL

2 is encoded
by the free-ride code Cf [nL, ℓL], resulting in a free-ride
codeword as g = fG̃f ∈ FnL

2 . Then the transmitted codeword
c can be calculated as

c = v + g, (3)

where “+” is the addition over FnL
2 . The decoding is

performed in a successive cancellation manner, where the
extra bits are firstly recovered and then the payload data
is recovered. For more detail, see [8]. From the encoding,
we see that the extra bits are transmitted along with the
payload, costing no extra bandwidth. This figure of merit
can be exploited to construct new coupling LDPC codes, say,
implicit globally-coupled LDPC codes, implicit product-LDPC
codes and terminated spatially-coupled LDPC codes [9]–[11].

B. Partial Product-LDPC Codes

Let C [n, k] be an LDPC code (chosen as the row component
code) with length n and dimension k, whose parity-check
matrix is denoted as H. Let C1[n1, k1] be an algebraic
code (chosen as the column component code) with length n1

and dimension k1, whose parity-check matrix is denoted as
H1. Let Cf [nn1, ℓn1] be a free-ride code with length nn1

and dimension ℓn1, whose generator matrix is denoted as
G̃f . Let u denote an information array with n1 rows (each
of which denoted as u(i)) and k columns (each of which
denoted as uj) to be transmitted. The proposed partial product
code is illustrated in Fig. 1. Each row u(i) ∈ Fk

2 for
0 ⩽ i ⩽ n1 − 1 is protected using C [n, k], resulting in n1

LDPC codewords, denoted as v = (v(0),v(1), · · · ,v(n1−1))
with v(i) ∈ Fn

2 . Different from the conventional product codes,
only ks columns1 uj ∈ Fn1

2 for 0 ⩽ j ⩽ ks − 1 are protected
using C1[n1, k1] as

ujH
T
1 = sj , (4)

resulting in ks syndromes, denoted as s = (s0, s1, · · · , sks−1)
with sj ∈ Fn1−k1

2 . Also distinguished from the conventional
product codes, the syndromes are transmitted implicitly rather
than explicitly by using the free-ride coding. For notational

Information 
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Column syndromes
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n1

ks

Free-ride

encoder

Fig. 1. An illustration of the rate-lossless partial product code, where the
column syndromes are transmitted implicitly rather than explicitly by using
the free-ride coding over all LDPC codewords.

convenience, the column syndromes {sj , 0 ⩽ j ⩽ ks − 1} are
written as (if necessary, ℓn1 − ks(n1 − k1) zeros are padded)
f ∈ Fℓn1

2 , which is encoded by free-ride codes and transmitted
as extra bits. The encoding algorithm of the proposed partial
product-LDPC codes is summarized in Algorithm 1.

Remark: For the presented partial product code, the infor-
mation length is n1k and the transmitted codeword length is
n1n, implying an actual code rate k/n which is the same as
that of the row LDPC code. For this reason, we say that the
proposed partial product codes are rate-lossless.

Algorithm 1 Encoding of the Rate-Lossless Partial Product-
LDPC Codes
Input: Information array u of size n1 × k.

1) Row Encoding: Take as input each row u(i) ∈ Fk
2

of the information array u to the payload LDPC
encoder and deliver as output an LDPC codeword
v(i) ∈ Fn

2 , resulting in n1 LDPC codewords v =
(v(0),v(1), · · · ,v(n1−1)).

2) Column Encoding: Take as input each column uj ∈
Fn1
2 for 0 ⩽ j ⩽ ks − 1 of the information array u

to the algebraic code and deliver as output sj = ujH
T
1 ,

resulting in ks column syndromes, denoted as f ∈ Fℓn1
2 .

3) Free-Ride Encoding: Encode the column syndromes f
by the free-ride code Cf [nn1, ℓn1], resulting in a free-
ride codeword g = fG̃f ∈ Fnn1

2 . Then the transmitted
codeword c ∈ Fnn1

2 is calculated by

c = v + g, (5)

where “+” is the addition over Fnn1
2 .

Output: Transmitted codeword c of length nn1.

At the receiver, upon receiving the noisy version y =
(y(0),y(1), · · · ,y(n1−1)) of c, we can calculate the corre-
sponding LLRs Λ = (Λ(0),Λ(1), · · · ,Λ(n1−1)) and perform
an iterative decoding, as described in Algorithm 2. Particularly,
at the column decoding stage, if the hard decision decod-
ing (HDD) of uj is successful, update the LLRs associated
with uj as fixed values (either positive or negative with large
amplitude) and exploit these “hardened” messages to improve
the free-ride decoding and the row decoding.

1Considering that each LDPC codeword can carry ℓ extra bits, we choose
ks such that ks(n1 − k1) ⩽ ℓn1.
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Algorithm 2 Decoding of the Rate-Lossless Partial Product-
LDPC Codes
Input: LLRs Λ.
repeat

1) Free-Ride Decoding: Take as input the LLRs Λ =
(Λ(0),Λ(1), · · · ,Λ(n1−1)) to the free-ride decoder of
Cf [nn1, ℓn1] and deliver as output the estimation of
column syndromes f̂ . Remove the effects of ĝ = f̂G̃f

on Λ to obtain the updated LLRs Λ̃ of v.
2) Row Decoding: For the unrecovered v(i) indicated by
the parity check, take as input Λ̃(i) of Λ̃ to the LDPC
decoder and deliver as output the estimation v̂(i).
3) Column Decoding: Perform an HDD of the algebraic
code for uj (0 ⩽ j ⩽ ks−1) based on f̂ . For each uj , if
the HDD is successful, update the LLRs associated with
ui as fixed values (either positive or negative with large
amplitude), resulting in an updated LLRs stored in Λ.

until v̂(i)HT = 0 for 0 ⩽ i ⩽ n1 − 1 or a preset global
maximum iteration number Imax is reached;

Output: Estimation of the information array û.

III. PERFORMANCE ANALYSIS AND CODE DESIGN

A. Free-Ride Codes: High Reliable Column Syndromes

From the decoding algorithm, we can see that the free-ride
decoding is crucial for the presented product-LDPC codes.
Let WERp be the word error rate of the original payload link
without extra bits, WERf be the word error rate of the extra
bits, and WERpf be the word error rate of the payload data
with extra bits. Then, as shown in [9], we have the upper
bound for WERpf as

WERpf ⩽ WERp +WERf . (6)

Example 1: To illustrate the performance of the free-ride
codes, we take a rate-1/2 irregular LDPC code of length 1024
as the payload code, which is constructed based on the variable
node degree distribution (from the perspective of the edge)
λ(x) = 0.32660x+0.11960x2+0.18393x3+0.36988x4 [12].
The length of extra bits for each LDPC codeword is ℓ = 6, 8
or 10. The simulation results by assuming additive white
Gaussian noise (AWGN) channels and binary phase-shift
keying (BPSK) modulation are shown in Fig. 2, where we
observe that the extra bits (labeled as WERf ) are more reliable
than the payload data (labeled as WERp). We also observe
that the extra bits become more reliable with smaller ℓ (the
average number of extra bits carried by one payload codeword)
or larger L (introducing interleaving gain). The upper bound
and performance of WERpf reveal that transmitting not too
many extra bits has negligible effect on the payload data.

B. Row Codes: LDPC Codes with Known Bits as Lower
Bounds

Obviously, the performance of the row decoding can not
be better than that in the case when both the free-ride codes
and the column codes are perfectly decoded. This motivates us
to present a GA lower bound by simulating the LDPC codes
with known bits. Without loss of generality, we assume that
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Fig. 2. Performance of the payload data (with or without extra bits) and the
extra bits, where ℓL extra bits are first encoded by the RM-based free-ride
codes and then carried by L payload LDPC codewords. The payload code is
a rate-1/2 irregular LDPC code of length 1024.
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Fig. 3. Performance of an LDPC code with ks known bits at the decoder.
The LDPC code is a rate-1/2 irregular LDPC code of length 1024.

the first ks coded bits, denoted as vL, are told by a genie to the
decoder, and the remained n− ks coded bits, denoted as vR,
need to be recovered. The parity-check matrix H of the LDPC
code is correspondingly divided into two parts, expressed as
H = [HL,HR]. With this assumption, we can perform an
iterative belief propagation (BP) decoding algorithm (say, the
sum-product algorithm (SPA) [13]) over a partial Tanner graph
specified by

vRH
T
R = vLH

T
L, (7)

which is equivalent to vRH
T
R = 0 over binary input output

symmetric (BIOS) channels.
Example 2: We take a rate-1/2 irregular LDPC code

of length 1024 used in Example 1 for the LDPC coded
transmission. The remained coded bits vR are transmitted over
AWGN channels using BPSK modulation. At the receiver,
the SPA over a partial Tanner graph specified by (7) with
a maximum iteration number of 50 is employed for the
decoding. The WER performance with different ks is shown
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Fig. 4. Approximated bounds on WER for the doubly-protected column
information with different BCH codes.

in Fig. 3, where we observe that the decoding performance
can be improved with the known bits. We also observe that
the LDPC coded transmission with more known bits can be
more reliable, as is consistent with our intuition.

C. Column Codes: BCH codes for Approximated Bound on
the Doubly-Protected Information

In this paper, we take the primitive BCH codes C1[n1, k1]
with length n1 = 2m − 1 and dimension k1 = n1 −mt as the
column codes, which are defined over the finite field F2m and
can correct up to t errors. We need to point out that, if the
syndrome is perfectly known, the error correction capability
is the same as the original BCH code.

To evaluate the performance of the decoding of the first
ks columns (referred to as doubly-protected information),
we assume that the BCH decoder sees a binary symmetric
channel (BSC) with crossover probability BERpf , where
BERpf is the bit error rate of the row component LDPC code
with extra bits. Similar to [9], we have the following bounds
on BERpf ,

BERp ⩽ BERpf ⩽ BERp +WERf (8)

by assuming that all information bits are erroneous when free-
ride decoding is unsuccessful, where BERp is the bit error
rate of the row component LDPC code without extra bits and
WERf is the word error rate of the free-ride code. As indicated
by Fig. 2, WERf is usually much less than BERp for small
number of extra bits, resulting in BERpf ≳ BERp. Under
these assumptions, the WER of the column decoder for the
doubly-protected information can be estimated as

WER =

n1∑
i=t+1

(
n1

i

)
BERi

p(1− BERp)
n1−i

, (9)

where the summation variable i denotes the total number of
erroneous bits in a column.

Example 3: Consider the rate-1/2 irregular LDPC code that
was used in Example 1. The approximated bounds on WER
for the doubly-protected column information with different
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Fig. 5. Performance of the proposed partial product-LDPC code, where Imax

is the global iteration number of Algorithm 2. The partial product code is
constructed from a rate-1/2 irregular LDPC code [1024, 512] and a BCH
code [1023, 983, 4].

BCH codes are shown in Fig. 4, where we observe that the
approximated bounds can be improved by increasing the error
correction capability t/n1, as is consistent with our intuition.

IV. NUMERICAL RESULTS

In this section, we present the numerical results of the
proposed partial product-LDPC codes. We take the rate-1/2
irregular LDPC codes or (3, 6)-regular LDPC codes as the
row codes and the primitive BCH codes as the column codes.
The iterative decoding algorithm (Algorithm 2) is employed
for the decoding. Unless otherwise stated, the maximum
iteration number of the SPA is 50 for the benchmark LDPC
codes and the row component LDPC codes. In all examples,
the codewords c are transmitted using BPSK signaling over
AWGN channels. Each LDPC codeword carries ℓ = 10 extra
bits in all simulations.

Example 4 (Different Imax): Take the rate-1/2 irregular
LDPC code [1024, 512] used in Example 1 as the row code
and the BCH code [1023, 983] as the column code. The
first ks = 255 = ⌊1023 × 10/40⌋ columns of u are
chosen to generate the column syndromes f . The WER
performances of the proposed partial product-LDPC code
with different Imax are shown in Fig. 5, where we observe
that the performance can be improved by increasing Imax,
approaching the performance with perfectly known column
syndromes. The WER performance of the row component
LDPC code can be reduced from 10−3 to 10−6 at the SNR
around 2 dB, yielding an extra coding gain of up to 0.9 dB
at WER = 10−5. Moreover, the WER performances of the
proposed codes match well with the GA bounds in the high
SNR region, implying that the error-floor performance can
be predicted by the proposed lower bound. We also observe
that, in comparison with the original free-ride codes, the extra
bits (column syndromes) performance can be improved by the
presented iterative decoding algorithm.

In addition, the WER performance of the doubly-protected
information after BCH decoding with Imax = 2 and its approx-
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Fig. 6. Performance of the benchmark component LDPC code, the doubly-
protected information, and the corresponding approximated bound. The first
ks = 255 columns of the information array is protected by both the irregular
LDPC code [1024, 512] and the BCH code [1023, 983].

imated bound are shown in Fig. 6, where we observe that the
WER performance of the doubly-protected information after
BCH decoding is close to the presented approximated bound,
implying that the doubly-protected information can reach a
WER of 10−15 at SNR around 2.5 dB.

Example 5 (Different BCH Codes): Take the rate-1/2
irregular LDPC code [1024, 512] used in Example 1 as the
row code. The column code is a BCH code [255, 239],
[1023, 983] or [1023, 963], corresponding to the number of
doubly-protected columns ks = 159, 255 or 170, respectively.
The WER performances of the proposed partial product-LDPC
codes with different BCH codes are shown in Fig. 7, where
we observe that the presented product code with the stronger
BCH code can have a better waterfall performance but a
slightly poorer error-floor performance since ks is smaller
when the BCH code is stronger. The presented product codes
with properly selected column codes can achieve a good
trade off between the waterfall performance and error-floor
performance.

Example 6 (Different LDPC Codes): Take the rate-1/2
irregular LDPC code [1024, 512] used in Example 1 or the
(3, 6)-regular LDPC code [1024, 512] as the row code. The
column code is a BCH code [1023, 983]. The number of
doubly-protected columns is ks = 255 = ⌊1023 × 10/40⌋.
The WER performances of the proposed partial product-LDPC
codes with different LDPC codes are shown in Fig. 8, where
we observe that the presented product code with the regular
LDPC code has better error-floor performance and with the
irregular LDPC code has better waterfall performance.

V. CONCLUSIONS

This paper has presented the rate-lossless product-LDPC
codes, where the partial column syndromes of the doubly-
protected information are transmitted implicitly using the free-
ride coding. For the code design, we have discussed in more
detail of the impact of row LDPC codes and column BCH
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Fig. 7. Performance of the proposed partial product-LDPC code with different
column codes, where Imax = 4. The row code is a rate-1/2 irregular
LDPC code [1024, 512] and the column code is a BCH code of [255, 239],
[1023, 983] or [1023, 963].
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Fig. 8. Performance of the proposed partial product-LDPC code with different
row codes, where Imax = 2. The column code is a BCH code [1023, 983]
and the row code is a (3, 6)-regular LDPC code or a irregular LDPC code.

codes on the performance. For the performance analysis, we
have proposed a lower bound which can predict the error-
floor performance of the proposed product-LDPC codes, and
an approximated bound which can estimate the high reliability
of the doubly-protected information. These bounds together
with the simulation results have shown that the presented
product-LDPC codes can outperform the component LDPC
codes, yielding an extra coding gain of up to 1 dB. One of
our future works is to investigate the choice of the doubly-
protected columns (which directly affect the lower bound
and the decoding performance), possibly yielding a further
performance improvement.
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